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a b s t r a c t

The average characteristics of the configuration interaction (CI) present the perspective,
but yet little used method for the estimation and investigation of CI effects in atoms. This
work is the first attempt to give the systematic view on such characteristics. Their general,
but rather simple explicit expressions are presented. The application of these character-
istics for the investigation of CI effects in atoms is illustrated by calculation results for
practically important cases of configurations with a symmetric exchange of symmetry,
(sd)N complex and some ground configurations. It is shown that the average weight of one
configuration in the expansion of the wave functions of the other configuration as well the
average shift of energy level of configuration due to its interaction with the levels of
distant configuration present useful characteristics for the selection of wave function
basis. The average characteristics can also be applied for the estimation of CI regularities in
the isoelectronic and isonuclear sequences, the determination of the types of CI.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The configuration interaction is the most widely used
method for taking into account correlations between elec-
trons in the calculations of atomic spectra. Configuration
mixing would be more accurate term, however, configuration
interaction, especially its CI abbreviation, is well-established
historically. Correlations between electrons play a rather
different role for various elements, numbers of electrons
in open shells and ionization degrees of atoms. The compre-
hensive reviews of CI with an analysis of correlation
effects for various configurations were given in widely used
monographs [1,2]; some regularities of the CI method were
discussed in [3–10]; many other works are indicated in
references therein.

For the estimation of CI effects, the investigation of
their regularities and influence on atomic spectra, the
average characteristics can be used [8,11,12]. As it is

known, the CI method converges rather slowly on increas-
ing the configuration basis. Thus, the average character-
istics of CI can be successfully applied for the selection of
the most important configurations, admixed to the con-
sidered configuration [13]. Consequently, further develop-
ment of this method is an actual task.

The aim of our work is to give the systematic view on
the average characteristics of CI in atoms, to present their
explicit expressions for a wide class of configurations
and to demonstrate their usefulness for the atomic
calculations.

The main methods, used for derivation of the average
characteristics of CI and its influence on atomic spectra, are
the second quantization representation [14] and group-
diagrammatic method [15–17,12]. In Section 2, these meth-
ods are shortly described. Various average characteristics of
CI in atoms, mainly obtained by the group-diagrammatic
method, are considered and their expressions are presented
in Section 3. The usefulness of these average characteristics
for the investigation of CI regularities is demonstrated by
their application to the configurations with a symmetric
exchange of symmetry (one electron is filling the vacancy in
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the lower shell and the other electron is excited to the
empty shell without the change of the principal quantum
number [18])

nl4lþ1nðlþ 1ÞNþ1 þ nl4lþ2nðlþ 1ÞN−1nðlþ 2Þ; ð1Þ
to the complex of (sd)N configurations

ndN þ ndN−1ðnþ 1Þsþ ndN−2ðnþ 1Þs2; ð2Þ
as well as to some configurations with one open shell. The
CI with a symmetric exchange of symmetry is considered in
the ions of tungsten, which spectra are important for the
modeling of tokamak plasma [19]. The interaction within
(sd)N complex is investigated for the neutral atoms and first
ions, where the configurations of this complex strongly
overlap and interchange their positions [1].

The results of calculations presented in this work were
obtained using the original computer code for the calcula-
tion of the average characteristics of atomic spectra [20]
with the quasirelativistic Hartree–Fock–Cowan wave func-
tions [1].

2. Methods of derivation of expressions for the average
characteristics

The summation over spin angular parts of matrix ele-
ments can be performed under usual assumption that the
single set of radial orbitals is used for all terms of configura-
tion. However, the direct summation of matrix elements is
hardly possible because their expressions contain, except for
the simple configurations, the fractional parentage coeffi-
cients, having non-standard form.

The derivation of matrix elements sums over many-
electron quantum numbers is possible in the second
quantization representation. Then the antisymmetrization
property is transferred from the wave functions to the
electron creation and annihilation operators obeying the
anticommutation rules. The Hamiltonian and other opera-
tors are expressed in terms of these one-electron opera-
tors. For example, the operator of the Coulomb interaction
between electrons is represented as follows:

He ¼ 1
2
∑
νξςη

aþν a
þ
ξ 〈νξjhejςη〉aηaς; ð3Þ

where the operator aþν creates an electron in the single-
electron state ν≡nlmμ and aν annihilates an electron in the
same state. The quantity in the brackets is the matrix element
of two-electron Coulomb operator he. This element has the
meaning of the amplitude of transition from one atomic state
to the other state under the action of operator he.

The sum of the product of two interconfiguration
matrix elements of operator He over the states of one
configuration can be represented:

∑
Γ′
〈KΓjHejK′Γ′〉〈K′Γ′jHejKΓ〉

-
1
4
∑
Γ′
〈KΓj∑

νξςη
aþν a

þ
ξ 〈νξjhejςη〉aηaςjK′Γ′〉

�〈K′Γ′j ∑
ν′ξ′ς′η′

aþν′a
þ
ξ′〈ν′ξ′jhejς′η′〉aη′aς′jKΓ〉; ð4Þ

where Γ and Γ′ denote many-electron states. The averaging

should be performed over all many-electron quantum
numbers, including the projections of total momenta.

In Eq. (4), the sums over single-electron states are
restricted to those excitations that connect the considered
configurations K and K′. Thus, the expression ∑

Γ′
jK′Γ′〉 〈K′Γ′j

can be removed using the closure theorem, even though
the states jK′Γ′〉 do not form a complete set [14]. This
occurs because the missing states cannot be connected to
the states jKΓ〉 and hence give zero matrix elements. Then
applying the anticommutation rules for the creation and
annihilation operators all a+ are carried out to the left and
operators a on the right in order to reduce the total
operator into the normal form. The two-electron matrix
elements are also transformed using the formulas for sums
of Wigner coefficients and 3nj coefficients. In such a way
the sum in Eq. (4) can be represented as a matrix element
of some effective operator Heff. Of course, the summation
over Γ′ can be performed only by the introduction of the
operator more complex than the Hamiltonian H. The
effective operator consists of several parts acting on
different numbers of electrons (they appear as a result of
the application of anticommutation rules). The most com-
plex part is the four-electron operator. The matrix element
of Heff is expressed using the mathematical apparatus of
irreducible tensors [1,21].

The second quantization representation was also applied
to derive some expressions for the average characteristics of
energy level spectra and transition arrays as well as for their
changes due to CI [11,22,23]. Using this representation, the
dependence of average quantities on the numbers of elec-
trons in the shells was determined, and then the coefficients
in the polynomials at the powers of Ni were obtained from
the explicit expressions for some simple configurations.
However, such a method becomes insufficient to find more
complex formulae.

In [15,16], the general method for the evaluation of the
operator averages for the fermion systems was proposed. It
was applied and elaborated for the summation of atomic
quantities over all many-electron quantum numbers [12];
its outline is presented in [17]. This method uses the
properties of irreducible representations of higher contin-
uous groups: special orthogonal group SO8l+5 and its uni-
tary subgroup U4l+2. These groups are inconvenient for the
classification of states due to a large number of repeating
terms, but are useful for finding expressions for the sums of
atomic quantities over all many-electron quantum num-
bers, whereas each irreducible representation of the unitary
group appears once and only once in a given irreducible
representation of the special orthogonal group.

The sum of matrix elements is expressed in terms of an
unitary scalar coefficient, having a simple algebraic expres-
sion, and a vacuum expectation. Separate terms of the sum
can be represented by special diagrams. The contribution
of every diagram consists of the N factor including all
dependence on the electron numbers in shells and the so-
called minimal sum of one- or two-electron matrix ele-
ments of operators corresponding to the considered quan-
tities. This method is implemented in the special heuristic
computer code [20].

In this work we will restrict our consideration to the non-
relativistic or quasirelativistic approximation. It preserves the
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LS coupling scheme within shells which usually is more
realistic than jj coupling scheme used in the relativistic
approximation. The relativistic effects can be taken into
account rather accurately, even for heavy atoms, by the
calculation of quasirelativistic radial orbitals [1,24].

3. Main characteristics of CI

3.1. The sums of squares of interconfiguration matrix
elements over the states of one configuration

The main quantity of the CI is the interconfiguration
matrix element (ICME). It can obtain both positive and
negative values, thus, in the calculation of average CI
characteristics it is necessary to take its square. The
cumulative influence of all states γ′ of configuration K′
on the state γ of configuration K is described by the sum of
the ICME squares over γ′. Using the second quantization
representation this sum can be presented in the form of
the matrix element of an effective operator Heff:

∑
γ0
〈KγjHjK 0γ0〉2 ¼ 〈KγjHef f jKγ〉: 5Þ

Here and further on many-electron states are denoted by
the Greek letters.

In the case of configuration K, containing only one open
shell, the explicit expression of matrix element of Heff was
obtained by direct summation of ICME in [7]. The general
expressions of effective operator for all types of CI were
presented in [12]. The matrix elements of Heff for some
particular configurations were given in [25,26].

The effective operator, corresponding to the Coulomb
interaction between electrons, has four-electron, three-
electron and two-electron parts; they all contain summa-
tions over ranks. At all ranks, equal to zero, the operator
becomes a purely scalar operator and its matrix element
does not depend on many-electron quantum numbers.
Due to this peculiarity the sum (5) for some pairs of
configurations becomes an invariant not-dependent on
the state γ. Such cases can be determined without con-
sideration of the particular form of Heff only on the ground
of the following reasoning.

The effective operator, like the Hamiltonian, has the
total zero rank. In the space of a closed shell only part of
operator with all zero ranks gives contribution to the
matrix element. Thus, the element of Heff becomes term-
independent, when the electrons are excited only from the
closed shells of configuration K (it can contain also passive
open shells do not involved in the excitations). The
invariance property can be extended to configuration K
containing also one active open shell, if Heff acts only on
one electron of this shell. Then in the matrix element of
effective operator all ranks become zero in the space of the
other closed shell (or other such shells). Consequently, the
sum (5) does not depend on many-electron quantum
numbers for the pairs of configurations, which fulfill the
following conditions: (i) configurations K and K′ are
related by two-electron excitations; (ii) one excitation is
from the open shell of K or to this shell; it can also be open
in K′ configuration; (iii) the other active shells of config-
uration K are closed. Two simple cases, corresponding to

the excitation from the closed shell, should be added too.
Both configurations K and K′ can contain any number of
passive open shells.

These conditions are fulfilled for the following K−K′
pairs (configuration K is indicated the first, the K and K′
cannot be interchanged):

K0l
4l1þ2
1 lN2

2 −K0l
4l1
1 lN2þ1

2 l3

K0l
4l1þ2
1 lN2

2 −K0l
4l1þ1
1 lN2−1

2 l23

K0l
4l1þ2
1 lN2

2 −K0l
4l1þ1
1 lN2−1

2 l3l4

K0l
4l1þ2
1 l4l2þ2

2 lN3
3 −K0l

4l1þ1
1 l4l2þ1

2 lN3þ1
3 l4

K0l
4l1þ2
1 −K0l

4l1
1 l2l3

K0l
4l1þ2
1 −K0l

4l1
1 l22: ð6Þ

Here K0 means closed or open passive shells. In this and
most of the subsequent formulae, li stands instead of nili in
the notations of shells, if there is no necessity to indicate
directly a principal quantum number.

In all cases (6) the matrix element of Heff equals the
constant C, which value can be determined on performing
in Eq. (5) the additional summation over γ:

∑
γγ0
〈KγjHjK′γ′〉2 ¼ CgðKÞ; ð7Þ

where g(K) is the statistical weight of configuration K.
Thus,

∑
γ0
〈KγjHjK′γ′〉2 ¼ C ¼

∑
γγ0
〈KγjHjK′γ′〉2

gðKÞ ð8Þ

The explicit formulae for the total sum of ICME squares
will be given in the next subsection of this paper.

Eq. (8) is valid for the pairs of configurations (6),
corresponding to the excitation not only to the discrete
state, but also to the continuum one. Transposition of open
and closed shells in the 1st and 4th configurations of the
set (6) gives the following pairs [27]:

K0l
N1
1 l4l2þ2

2 −K0l
N1þ1
1 l4l22 εl

K0l
N1
1 l4l2þ2

2 l4l3þ2
3 −K0l

N1þ1
1 l4l2þ1

2 l4l3þ1
3 εl; ð9Þ

where ε is the energy of free electron. Then Eq. (8) can be
applied for the derivation of the expression for the partial
Auger width:

ΓAðKγJ−K′εlÞ ¼ ∑
γ0 J0 j

〈KγJjHjK′γ′J′εljJ〉2: ð10Þ

Here l and j are the quantum numbers of Auger electron;
the total quantum number J is excluded from γ. The wave
function of Auger electron is normalized into the unit flux
of electrons, and the atomic units are used. The term-
independence of some class of partial Auger widths was
established and their expressions were given in [27,28].

It is possible also to determine the pairs of configura-
tions when the corresponding effective operator contains
at most two-electron part. It takes place for configurations
K, containing one open active shell, when two electrons
from this shell are excited in configuration K′.
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3.2. Sums of the squares of ICME over states of both
configurations

The expressions for the sums over all many-electron
quantum numbers are easily derived employing the
group-diagrammatic method. In the nonrelativistic
approximation the contribution to ICME for the two-
electron excitation is given only by the operator He of
the Coulomb interaction between electrons. When two
electrons are excited from one shell to another shell, the
following expression is obtained [12]:

∑
γγ0
〈K0l

N1
1 lN2

2 γjHejK0l
N1−2
1 lN2þ2

2 γ′〉2

¼ gðK0Þ
4l1
N1−2

 !
4l2
N2

 !
Mðl1l1; l2l2Þ; ð11Þ

where the quantity in the brackets on the right-hand side
of the equation is the binomial coefficient and Mðl1l1; l2l2Þ
is the minimal sum of two-electron matrix elements. Its
general expression is the following:

Mðl1l2; l3l4Þ ¼∑
LS
½L; S�〈l1l2LSjhejl3l4LS〉2

¼ 16N2
l1 ;l2N

2
l3 ;l4∑

kk′

δðk; k′Þ
2kþ 1

ℜkðl1l2; l3l4Þ2 þℜkðl1l2; l4l3Þ2
h i�

−ð−1Þkþk′ l1 l3 k

l2 l4 k′

( )
ℜkðl1l2; l3l4Þℜk′ðl1l2; l4l3Þ

)
:

ð12Þ
Here [x, y,…]≡(2x+1)(2y+1)…, Nl1 ;l2 is the normalization
constant:

Nl1 ;l2≡Nn1l1 ;n2 l2 ¼
1=2 for the equivalent electrons ðn1 ¼ n2; l1 ¼ l2Þ;
1=

ffiffiffi
2

p
for the nonequivalent electrons;

(

ð13Þ
ℜk is the radial integral Rk of the Coulomb interaction

multiplied by the one-electron reduced matrix elements of
spherical harmonic C(k):

ℜkðl1l2; l3l4Þ≡ℜkðn1l1n2l2;n3l3n4l4Þ
¼ Rkðn1l1n2l2;n3l3n4l4Þ〈l1jjCðkÞjjl3〉〈l2jjCðkÞjjl4〉: ð14Þ

When excitations involve three or four shells, the sum
gets:

∑
γγ′
〈K0l

N1
1 lN2

2 lN3
3 γjHejK0l

N1−2
1 lN2þ1

2 lN3þ1
3 γ〉2

¼ gðK0Þ
4l1

N1−2

 !
4l2 þ 1
N2

 !
4l3 þ 1
N3

 !
Mðl1l1; l2l3Þ;

ð15Þ

∑
γγ0
〈K0l

N1
1 lN2

2 lN3
3 lN4

4 γjHejK0l
N1−1
1 lN2þ1

2 lN3þ1
3 lN4−1

4 γ〉2

¼ gðK0Þ
4l1 þ 1
N1−1

 !
4l2 þ 1
N2

 !
4l3 þ 1
N3

 !
4l4 þ 1
N4−1

 !

�Mðl1l4; l2l3Þ: ð16Þ

Only the Coulomb interaction may be taken into
account at single-electron excitation with a change of

orbital quantum number:

∑
γγ′
〈K0l

N1
1 lN2

2 γjHejK0l
N1−1
1 lN2þ1

2 γ′〉2

¼ gðK0Þ
4l1−1
N1−2

 !
4l2 þ 1
N2

 !
Mðl1l1; l1l2Þ

"

þ
4l1 þ 1
N1−1

 !
4l2−1
N2−1

 !
Mðl1l2; l2l2Þ

#

þ ∑
i⊂K0

gðK0Þ
gðlNi

i Þ
4li

Ni−1

 !
4l1 þ 1
N1−1

 !
4l2 þ 1
N2

 !

�Mðlil1; lil2Þ; l1≠l2: ð17Þ
However, the summation over all shells of K0 appears.

When interacting configurations differ by a state of one
electron with the same orbital quantum number, addi-
tionally the one-electron operators of potential and kinetic
energy as well as the spin-orbit operator give contribu-
tions to the double sum. The expressions for these addi-
tional parts are given in [12].

The separate cases of the formula (15) and (16) present
the total Auger transition rates at the decay of states with
one inner vacancy:

∑
γγ0
〈K0l

4l1þ1
1 lN2

2 γjHejK0l
4l1þ2
1 lN2−2

2 γεlγ′〉2

¼ gðK0Þ
4l2

N2−2

 !
Mðl2l2; l1εlÞ; ð18Þ

∑
γγ′
〈K0l

4l1þ1
1 lN2

2 lN3
3 γjHejK0l

4l1þ2
1 lN2−1

2 lN3−1
3 γεlγ′〉2

¼ gðK0Þ
4l2 þ 1
N2−1

 !
4l3 þ 1
N3−1

 !
Mðl2l3; l1εlÞ: ð19Þ

These formulae can be used for the extrapolation of
Auger transition rates for the other configurations of the
same element under the assumption that the values of
radial integrals and the minimal sum approximately do not
depend on the configuration.

Fig. 1. Sum of the squares of interconfiguration matrix elements
ΘðK;K′Þ≡∑

γγ0
〈KγjHjK′γ′〉2 between configurations 4p54dN+1 and 4p64dN−14f

in the Wq+ isonuclear sequence. The value of ionization degree q¼29–37 is
indicated near the curve.
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The sums of the squares of ICME for some strongly
interacting configurations are presented in Figs. 1 and 2. The
value of such a sum depends on the number of interacting
states, which is expressed in terms of the binomial coeffi-
cients. At the two-electron excitation with a symmetric
exchange of symmetry (1), the variation of sum with filling
the same open shell is determined by one binomial coeffi-

cient
4l

N−1

� �
, thus, the considered quantity obtains its

maximum for the half-filled shell N¼2l+1 (Fig. 1). For the
single-electron excitation with a change of orbital quantum
number (2) the variation of such a sum is less smooth and
its maximum tends to be shifted to a larger number of
electrons (Fig. 2) due to the additional terms having more
complex dependence on a number of electrons. The value of
sum also strongly depends on the overlap of radial orbitals
of active electrons and consequently indicates the strength
of CI. Especially large value of this sum for configurations
(1) at l¼2 (Fig. 1) indicates that this correlation effect is one
of the strongest in atoms. On the other hand, the CI in the
(nd(n+1)s)N complex increases with n due to the contrac-
tion of radial orbitals in the homologous sequence.

3.3. Configuration interaction zone and two types of CI.

Usually various states of considered configuration
interact differently with the states of other configuration.
Such a peculiarity of configuration K interaction with
configuration K′ can be characterized by the average
energy of configuration K obtained using a weight, equal
to the square of ICME:

EavK′ ðKÞ ¼
∑
γγ′
〈KγjHjKγ〉〈KγjHjK′γ′〉2

∑
γγ′
〈KγjHjK′γ′〉2: ð20Þ

in this equation the summation over γ′ is acting only on
the ICME. The application of Eq. (8) shows that there exists
a class of configurations K′, which interaction with K
corresponds to the simple equality:

∑
γγ′
〈KγjHjKγ〉〈KγjHjK′γ′〉2

∑
γγ′
〈KγjHjK′γ′〉2

¼ ∑γ〈KγjHjKγ〉
gðKÞ ð21Þ

or

EavK′ ðKÞ ¼ EavðKÞ; ð22Þ
where EavðKÞ is the average energy of configuration K. The
Eq. (22) means that every state of configuration K interacts
equally with the whole array of states of configuration K′.
Such pairs are indicated in the set (6). The interchange of
the role of two configurations in the pair shows that the
equality

EavK ðK′Þ ¼ EavðK′Þ ð23Þ
is fulfilled for the following pairs of K−K′ (K′ is the excited,
located higher with respect to K configuration):

K0l
N1
1 l4l22 l3−K0l

N1−1
1 l4l2þ2

2

K0l
N1
1 l4l2þ1

2 l4l3þ1
3 l4−K0l

N1−1
1 l4l2þ2

2 l4l3þ2
3 : ð24Þ

It follows from the comparison of (6) and (24) sets that
both conditions (22) and (23) cannot be fulfilled simulta-
neously. Surely, more often various states of configuration
play different role in the CI, and the shift

ΔEavK′ ðKÞ ¼ EavK′ ðKÞ−EavðKÞ ð25Þ
can obtain rather large values, even constituting an essen-
tial part of an energy spectrum interval. Especially it is
typical of the configurations with a symmetric exchange of
symmetry which belong to the same complex of config-
urations. Some regularities of the interaction of such
configurations will be considered in the next section.

For the description of the influence of configuration K′
on the configuration K, the concept of interaction zone can
be introduced, it means the main part of energy level
spectrum of configuration K taking part in the interaction
with configuration K′. Such an effective zone is deter-
mined by its statistical moments. The quantity EavK′ ðKÞ
presents its first moment – the average energy of the
zone. Its second moment is the variance, which is defined
with respect to the average energy:

s2K′ðKÞ ¼
∑γγ′ 〈KγjHjKγ〉−EavK′ ðKÞ

� �2
〈KγjHjK′γ′〉2

∑γγ′〈KγjHjK′γ′〉2
: ð26Þ

This quantity contains the information on the width of
interaction zone. It can be estimated from the approximate
formula:

ΔEK 0 ðKÞ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ln2 s2K′ðKÞ:

q
ð27Þ

It should be noted, that this equation can become very
approximate at small number of levels.

Moreover, the higher moments of zone, containing the
higher degrees of the difference between the matrix
element and the average energy, can be introduced. The

Fig. 2. Sum of the squares of interconfiguration matrix elements
ΘðK;K′Þ≡∑

γγ0
〈KγjHjK′γ′〉2 between configurations ndN and ndN−2(n+1)s2

(○); ndN and ndN−1(n+1)s (□); ndN−1(n+1)s and ndN−2(n+1)s2 (Δ) in the
isonuclear sequences at n¼3 for Crq+ (a) and n¼4 for Moq+ (b), q¼0–4.

R. Karazija, S. Kučas / Journal of Quantitative Spectroscopy & Radiative Transfer 129 (2013) 131–144 135



Author's personal copy

explicit formula for s2K′ðKÞ is obtained employing the
group-diagrammatic method. The expression of s2K′ðKÞ is
more complex in comparison with the average energy,
thus, it was derived and calculated using the special
computer code [20]. This method enables one to obtain
the formulae for the higher moments too.

The expressions for the average energy of zone at the
two-electron excitation and at the single-electron excita-
tion with a change of orbital quantum number are given in
the Appendix. The more complex formula for the Brillouin
excitation was obtained in [13].

In the case of the first configuration K for the pairs (6)
as well as for the second configurations K′ for the pairs
(24) the CI zone coincides with the energy level spectrum
of configuration. This follows from the fact (also directly
obtained from Eq. (8)), that not only average energies of
configuration and zone, but also all their higher statistical
moments coincide. For example, such a zone corresponds
to the interaction of configuration p6dN with configura-
tions p5dN−1pd, p4dN+1d and p4dNp2. However, for the
configurations of the other type the intervals of CI zone
and energy level spectrum can differ significantly (Fig. 3).
Consequently, the concept of zone can be useful for
investigation of the regularities of CI interaction in atoms.

3.4. Average distance between two interacting
configurations

The average energy distance between configurations
can be approximately estimated by the difference of their
average energies. More exact expression is obtained taking
into account the energy differences only between inter-
acting states as well as the magnitudes of relating them

ICME [12]:

EavðK;K′Þ ¼ ∑γ γ′ 〈KγjHjKγ〉−〈K′γ′jHjK′γ′〉½ � 〈KγjHjK′γ′〉2
∑γ γ′〈KγjHjK′γ′〉2

:

ð28Þ

It is convenient to define EavðK;K′Þ as a positive quan-
tity, then K means higher and K′ lower configuration.
According to Eq. (20), the average energy distance is
expressed in terms of the average energies of CI zones
already considered in the previous section:

EavðK;K′Þ ¼ EavK 0 ðKÞ−EavK ðK′Þ: ð29Þ

This characteristic presents well-defined average
energy distance even between overlapping and intersect-
ing configurations. It can be applied for the configurations
belonging to (nd(n+1)s)N complex. At n¼3, the energy
levels of all three configurations strongly overlap, but
EavðK;K′Þ indicates, that in neutral atoms the average
distance between interacting levels is smallest for the
3dN−24s2 and 3dN−1 4s configurations and thus their inter-
action is strongest (Fig. 4a). The intersection of 3dN and
3dN−2 4s2 configurations takes place on going from neutral
atoms to first ions and of 3dN and 3dN−14s configurations
on increasing the ionization degree q from 1 to 2. The
corresponding data for similar configurations with n¼4
and 5 also enables one to analyze their interaction in the
isonuclear sequence (Figs. 4b and c). At n¼4, the strongest

Fig. 3. Energy level spectra and CI zones for configurations 4p54d9 and
4p64d74f of Sn6+. The interval of zone, determined from Eq. (27), is
shown by broken line on the right-hand side of the spectrum. For the
comparison the interval of energy level spectrum, determined from the
same approximate Eq. (27), is indicated by the solid line on the other side
of the spectrum.

Fig. 4. Average energy between the levels of interacting configurations
ndN and ndN−2(n+1)s2 (○); ndN and ndN−1(n+1)s (□); ndN−1(n+1)s and
ndN−2(n+1)s2 (Δ) in the isonuclear sequences at n¼3 for Crq+ (a), n¼4 for
Moq+ (b) and n¼5 for Wq+ (c), q¼0-3.
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CI is a characteristic typical of neutral atoms, while at n¼5
of single ions. In all cases the EavðK;K′Þ changes faster with
ionization degree between configurations differing by two
3d electrons.

3.5. Average shift of the energy level due to its interaction
with the levels of distant configuration

In the second order of the perturbation theory the shift
of the energy of state γ due to its interaction with all states
of configuration K′ or CI correction is expressed:

ΔEðKγ;K′Þ ¼∑
γ0

〈KγjHjK′γ′〉2
EðKγÞ−EðK′γ′Þ : ð30Þ

the same expression gives the shift of the energy level.
If the excited configuration K′ is energetically distant

from configuration K, the denominator in Eq. (30) can be
approximately replaced by the average distance between
K γ and configuration K′ (this quantity is defined similarly
as in Eq. (28), but only with one summation over γ′). Then
the shift equals

ΔEðKγ;K′Þ ¼ 〈KγjHef f jKγ〉
EavðKγ;K′Þ

: ð31Þ

While averaging ΔEðKγ;K′Þ over the states of configuration
K and introducing the positive average distance
EavðK′;KÞ ¼−EavðK;K′Þ, the mean value of the shift for
levels or states of configuration K is obtained [12]:

ΔEavðK ;K′Þ ¼−
∑γ γ0〈KγjHjK′γ′〉2
gðKÞEavðK′;KÞ

: ð32Þ

Here the already introduced quantities are used. This
average characteristic gives the simple estimation of the
contribution of various distant configurations on the
adjustment of energy levels for the considered configura-
tion. In Tables 1 and 2 it is illustrated by the results of
calculation for Mo3+ 3d4 and Se 4p4 taking into account
various excited configurations. The relative error of
ΔEavðK ;K′Þ calculation in comparison with its value,
obtained by matrix diagonalization, usually does not
exceed one percent.

3.6. Configuration interaction strength

In order to select the optimal set of the most important
configurations for the calculation of considered electronic
configuration it is useful to introduce also the other
measure of CI. It can be related to the weight coefficient
in the expansion of wave function. In the first order of the
perturbation theory such a coefficient is proportional to
ICME between two interacting states and inversely pro-
portional to the energy distance between them. In order to
avoid the compensation effects on averaging such a
measure, the squares of quantities should be taken. Thus,
the configuration interaction strength (CIS) can be defined
as follows:

TðK ;K 0Þ ¼ ∑γ γ′〈KγjHjK′γ′〉2
EavðK;K′Þ2

: ð33Þ

At first it was introduced with the difference of average
energies of configurations in the denominator [29]. Later

the difference of average energies was replaced by more
accurate average distance between two interacting config-
urations EavðK ;K′Þ [12]. Also the variant of CIS with a
variance of the distances between the interacting states
was considered [8,12], but this quantity has more complex
expression.

TðK;K′Þ approximately equals the sum of squares of
expansion coefficients of wave functions of configuration
K′ in all wave functions of configuration K. In order to
obtain the average weight of all states of configuration K′
in the expansion of the wave functions of configuration K
the TðK;K′Þ should be divided by the statistical weight g(K)
of configuration K:

a2ðK;K′Þav ¼
TðK ;K′Þ
gðKÞ ≈

1
gðKÞ∑γ γ′

a2ðKγ;K′γ′Þ: ð34Þ

Here aðKγ;K′γ′Þ is the expansion coefficient in the two-
configuration approximation. Such an average weight of
one state of configuration K 0 in the expansion of the wave
functions of configuration K is obtained via the additional
division of Eq. (34) by statistical weight gðK 0Þ.

The values of the average weight, CI strength TðK;K′Þ as
well as of other average characteristics for Mo3+ 3d4 and Se
4p4 configurations interacting with some set of the excited
configurations are presented in Tables 1 and 2. In order to
check the accuracy of the estimation of average weights by
Eq. (34), their exact values obtained by the diagonalization
of energy matrix are given too and the difference in percent
is indicated. Our calculations for other configurations as
well as some results presented in [13,30] confirm that the
relative error of a2ðK;K′Þ estimation usually does not exceed
several percent for energetically distant and even neighbor-
ing configurations. Thus, such an average characteristic is
useful for the selection of CI basis, except overlapping
configurations, which usually are well-known (for this
reason the 3d24s2 and 3d34s configurations are not pre-
sented in Table 1).

3.7. Shift of the average energy of emission spectrum due to
CI

The average energy of the array of electric dipole
transitions between the levels of two configurations is
defined [11]:

Eeavð ~K ;K′Þ ¼
∑ ~γ γ′ 〈 ~K ~γ jHj ~K ~γ〉−〈K′γ′jHjK′γ′〉

h i
Sð ~K ~γ ;K′γ′Þ

∑ ~γ γ′Sð ~K ~γ ;K′γ′Þ
; ~K≡K1 þ K2;

ð35Þ
where SðKγ;K′γ′Þ is the line strength. At equal population
of all initial states and transition energy essentially
exceeding the sum of widths of energy level spectra of
both configurations, Eq. (35) gives the average energy of
emission spectrum. Then the influence of CI on emission
spectrum is described as the difference of average ener-
gies, calculated in the CI and in the single-configuration
(SC) approximations:

ΔE¼ ECIav−E
SC
av : ð36Þ

This quantity can be derived explicitly, but only for the
total array of transitions between the sets of interacting
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Table 1
Average characteristics EavK 0 ðKÞ (20), EavðK;K′Þ (28), ΔEðK;K′Þ (32), TðK ;K′Þ (33) and a2ðK;K′Þav (34) corresponding to the interaction of configuration K¼3p6 3d4 for Mn3+ with various excited configurations K′.

ðK′Þ EavK 0 ðKÞ(eV) EavðK′Þ(eV) EavK ðK′Þ(eV) EavðK′;KÞ(eV) TðK;K′Þ Average energy level shift Average weight

Obtained by matrix
diagonalization

ΔEavðK;K′Þ(eV) Error in
%

Obtained by matrix
diagonalization

Calculated using CI
strength
from eq. (34)

Error in
%

3s23p43d6 0.43 106.61 121.19 120.76 2.37E+00 −1.3496 −1.3616 0.89 1.10E-02 1.13E-02 2.68
3s3p63d5 0.73 89.93 92.26 91.53 3.10E-01 −0.1347 −0.1349 0.14 1.47E-03 1.47E-03 0.42
3s23p43d54d 0 136.3 146.02 146.02 1.99E-01 −0.1388 −0.1385 −0.21 9.55E-04 9.49E-04 −0.61
3s23p53d34p4d 0 109.41 116.1 116.1 1.42E-01 −0.0785 −0.0783 −0.27 6.79E-04 6.74E-04 −0.8
3s23p63d24d2 0.32 68.6 72.33 72.01 1.21E-01 −0.0415 −0.0415 −0.03 5.77E-04 5.76E-04 −0.1
3s23p53d44 f −0.17 88.52 99.5 99.67 1.09E-01 −0.0521 −0.0519 −0.45 5.28E-04 5.20E-04 −1.36
3s23p53d45 f −0.17 93.6 104.51 104.68 7.30E-02 −0.0366 −0.0364 −0.43 3.52E-04 3.48E-04 −1.3
3s23p63d24d5d 0.33 78.35 81.47 81.13 6.92E-02 −0.0267 −0.0267 −0.06 3.30E-04 3.29E-04 −0.17
3s23p43d55d 0 144.9 154.04 154.04 6.27E-02 −0.0461 −0.046 −0.27 3.01E-04 2.99E-04 −0.8
3s03p63d6 1.26 182.12 183.41 182.15 5.98E-02 −0.0518 −0.0519 0.02 2.85E-04 2.85E-04 0.05
3s23p63d24p2 1.28 46.51 47.52 46.24 5.16E-02 −0.0114 −0.0114 −0.24 2.47E-04 2.46E-04 −0.71
3s23p43d44p2 0 152.73 158.46 158.46 4.72E-02 −0.0357 −0.0356 −0.26 2.27E-04 2.25E-04 −0.79
3s23p53d34p5d 0 119.01 123.76 123.76 4.72E-02 −0.0279 −0.0278 −0.29 2.27E-04 2.25E-04 −0.85
3s3p53d54p 0 162.18 174.92 174.92 3.96E-02 −0.033 −0.033 −0.12 1.89E-04 1.89E-04 −0.35
3s23p53d34d5p 0 126.39 130.8 130.8 3.59E-02 −0.0224 −0.0223 −0.26 1.72E-04 1.71E-04 −0.76
3s3p63d34s4d 0 140.44 144.37 144.37 3.04E-02 −0.0209 −0.0209 −0.04 1.45E-04 1.45E-04 −0.11
3s3p6 3d4s −0.04 103.47 103.48 103.51 2.61E-02 −0.0139 −0.0129 −7.46 1.34E-04 1.24E-04 −7.44
3s23p53d34s4p 0 90.37 95.27 95.27 2.58E-02 −0.0118 −0.0117 −0.55 1.25E-04 1.23E-04 −1.61
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Table 2
Average characteristics EavK 0 ðKÞ (20), EavðK ;K′Þ (28), ΔEðK ;K′Þ (32), TðK;K′Þ (33) and a2ðK;K′Þav (34) corresponding to the interaction of configuration K¼4s24p4 for Se with various excited configurations K‘.

ðK′Þ EavK 0 ðKÞ(eV) EavðK′Þ(eV) EavK ðK′Þ EavðK′;KÞ(eV) TðK;K′Þ Average energy level shift Average weight

Obtained by matrix
diagonalization

ΔEavðK;K′Þ(eV) Error in
%

Obtained by matrix
diagonalization

Calculated using CI
strength
from Eq. (34)

Error in
%

4s24p24d2 0.08 21.07 22.76 22.68 9.36E-02 −0.1408 −0.1415 0.44 6.16E-03 6.24E-03 1.32
4s24p24d5d 0.08 22.36 24.24 24.16 4.52E-02 −0.0727 −0.0727 0.08 3.00E-03 3.01E-03 0.24
4s4p44d −0.15 21.4 23.86 24.01 4.20E-02 −0.0678 −0.0672 −0.81 2.87E-03 2.80E-03 −2.52
4s04p6 2.65 27.73 27.73 25.07 3.24E-02 −0.0524 −0.0541 3.12 1.97E-03 2.16E-03 9.57
4s4p45d −0.15 22.24 24.6 24.75 2.07E-02 −0.0345 −0.0341 −0.94 1.42E-03 1.38E-03 −2.89
4s24p24d6d 0.09 22.85 24.32 24.23 2.03E-02 −0.0328 −0.0328 −0.1 1.36E-03 1.35E-03 −0.3
4s24p24d5s 0.11 19.02 19.79 19.68 1.08E-02 −0.0142 −0.0142 −0.03 7.21E-04 7.20E-04 −0.09
4s4p46d −0.15 22.61 24.92 25.07 1.07E-02 −0.0181 −0.0179 −1 7.37E-04 7.14E-04 −3.08
4s24p25p2 0.1 20.84 21.74 21.64 6.07E-03 −0.0088 −0.0088 −0.12 4.06E-04 4.05E-04 −0.37
4s24p25d2 0.09 25.36 26.07 25.98 5.78E-03 −0.01 −0.01 −0.14 3.87E-04 3.86E-04 −0.41
4s24p25d6d 0.09 26.29 27 26.91 3.49E-03 −0.0063 −0.0063 −0.15 2.34E-04 2.33E-04 −0.43
4s4p35s5p 0 30.89 33.18 33.18 3.33E-03 −0.0075 −0.0074 −1.12 2.30E-04 2.22E-04 −3.4
4s4p34d5p 0 32.75 35.37 35.37 3.25E-03 −0.0077 −0.0077 −0.83 2.22E-04 2.17E-04 −2.49
4s24p25s2 0.44 17.29 17.8 17.36 3.01E-03 −0.0035 −0.0035 −0.03 2.01E-04 2.00E-04 −0.09
4s04p55p 0 35.97 36.05 36.05 2.45E-03 −0.0059 −0.0059 −0.05 1.64E-04 1.63E-04 −0.15
4s24p25p6p 0.11 22.8 23.58 23.47 2.38E-03 −0.0037 −0.0037 −0.14 1.60E-04 1.59E-04 −0.42
4s24p25s5d 0.11 20.64 20.84 20.73 2.18E-03 −0.003 −0.003 −0.11 1.46E-04 1.46E-04 −0.32
4s24p24d6s 0.11 21.81 22.11 22 1.85E-03 −0.0027 −0.0027 −0.08 1.23E-04 1.23E-04 −0.22
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configurations. Often the transitions from two interacting
configurations into single configuration are considered.
Then follows:

ΔECIðK0l
N1−1
1 lN2þ1

2 lN3
3 þ K0l

N1
1 lN2−1

2 lN3þ1
3 -K0l

N1
1 lN2

2 lN3
3 Þ

¼ 2
4l2 þ 1

ð4l1 þ 2Þd2l2 ;l3
N1ð4l2 þ 2−N2Þ

þ ð4l3 þ 2Þd2l1 ;l2
N2ð4l3 þ 2−N3Þ

" #−1
dl1 ;l2dl3 ;l2

�∑
k

2δðk;1Þ
3

−
l1 l2 k

l3 l2 1

( )" #
ℜkðl1l3; l2l2Þ; ð37Þ

where dl1 ;l2 is the reduced matrix element of the dipole
transition operator

dl1 ;l2≡dn1l1 ;n2l2 ¼ 〈n1l1jjdð1Þjjn2l2〉¼−〈l1jjCð1Þjjl2〉〈n1l1jrjn2l2〉

ð38Þ
and the quantity in the braces of Eq. (37) is the 6j
coefficient. The separate case of Eq. (37) at N1¼4l1+1
was derived in [11] and for any N1 in [23,31].

When four open shells are involved in the transitions,
one gets [31,12]:

ΔECIðK0l
N1−1
1 lN2þ1

2 lN3
3 lN4

4 þ K0l
N1
1 lN2

2 lN3−1
3 lN4þ1

4 -K0l
N1
1 lN2

2 lN3
3 lN4

4 Þ

¼ 2ð2l3þ1Þð2l4þ1Þd2l1 ;l2
N3ð4l4þ2−N4Þ þ 2ð2l1þ1Þð2l2þ1Þd2l3 ;l4

N1ð4l2þ2−N2Þ

� 	−1
dl1 ;l2dl4 ;l3

�∑
k

2δðk;1Þ
3 ℜkðl3l2; l4l1Þ þ ð−1Þk

l1 l2 1
l4 l3 k

( )
ℜkðl3l2; l1l4Þ

" #
:

ð39Þ
The shift of spectrum from one initial configuration to

two interacting configurations can be obtained from Eqs.
(37) and (39) using the vacancy-electron symmetry of
averages [12]:

ΔECIðK0l
N1−1
1 lN2þ1

2 lN3
3 þ K0l

N1
1 lN2−1

2 lN3þ1
3 -K0l

N1
1 lN2

2 lN3
3 Þ

-−ΔECIðK0l
4l1þ2−N1
1 l4l2þ2−N2

2 l4l3þ2−N3
3

−K0l
4l1þ3−N1
1 l4l2þ1−N2

2 l4l3þ2−N3
3 þ K0l

4l1þ2−N1
1 l4l2þ3−N2

2 l4l3þ1−N3
3 Þ;

ð40Þ

ΔECIðK0l
N1−1
1 lN2þ1

2 lN3
3 lN4

4 þ K0l
N1
1 lN2

2 lN3−1
3 lN4þ1

4 -K0l
N1
1 lN2

2 lN3
3 lN4

4 Þ

-−ΔECIðK0l
4l1þ2−N1
1 l4l2þ2−N2

2 l4l3þ2−N3
3 l4l4þ2−N4

4

−K0l
4l1þ3−N1
1 l4l2þ1−N2

2 l4l3þ2−N3
3 l4l4þ2−N4

4

þK0l
4l1þ2−N1
1 l4l2þ2−N2

2 l4l3þ3−N3
3 l4l4þ1−N4

4 Þ ð41Þ
The results of ΔECI shift calculation from strongly inter-

acting configurations (1) and (2) to the ground configuration
for ions of tungsten are presented in Figs. 5 and 6. It follows
from the analysis of the shift equation for these transitions
that ΔECI always obtains a positive value [11]. It means that
configuration mixing enhances the shorter wavelength tran-
sitions from the higher excited configuration and quenches
the longer wavelength transitions from the lower configura-
tion. Usually it is related to the essential narrowing of the
emission spectrum [11,32]. The presence of multipliers Ni (4l
+2−Ni) in Eqs. (37) and (39) determines their symmetry with
respect to the half-filled shell, but it is distorted by the
increase of radial integrals in the isonuclear sequence. More-
over, due to this increase of integrals for the higher ionization

degrees the ΔECI shift obtains larger value for transitions (2)
at smaller value of principle quantum number n.

The shift of the average energy of Auger spectrum has
more complex form. Its explicit expressions will be pre-
sented in a separate paper.

4. Conclusions

The advantage of the average CI characteristics in atoms is
mainly determined by the presence of their rather simple
explicit expressions. In this work, they are presented for a
wide class of configurations. The given calculation results
illustrate the usefulness of these characteristics for the selec-
tion of configurations the most important for the considered
configuration as well as for the investigation of the regularities
of CI effects in the isoelectronic and isonuclear sequences. The

Fig. 5. Shift of the average energy of emission spectrum due to CI for the
transitions ð4p54dNþ1 þ 4p64dN−14fÞ−4p64dN in the Wq+ isonuclear
sequence, q¼29–37. The value of ionization degree is indicated near
the curve.

Fig. 6. Shift of the average energy of emission spectrum due to CI for the
transitions (4s4pN+1+4s24pN−14d)−4s24pN in the Wq+ isonuclear
sequence, q¼39–43 (�) and for the transitions (3s3pN+1+3s23pN−13d)
−3s23pN in the Wq+ isonuclear sequence, q¼57–61 (○). The value of
ionization degree is indicated near the curve.
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sums of interconfiguration matrix elements and the strength
of CI can be used to compare various correlation effects. The CI
strength, divided by the statistical weight of configuration,
presents the useful characteristic for the estimation of average
weights in the expansion of wave functions and consequently
for the selection of CI bases. The CI zone gives the possibility
to determine the main part of the energy level spectrum
taking part in the interactionwith the other configuration and
to distinguish the type of configuration, which levels equally
influence all levels of the other configuration. The average
shift of energy level due to its interaction with the levels of
other configuration presents simple, but rather accurate
characteristic for the estimation of the contribution of various

distant configurations on the adjustment of energy levels for
the considered configuration. The shift of the average energy
of emission or Auger spectrum due to CI enables one to
investigate the influence of CI on such spectra.
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Appendix. Expressions for the average energy distance between two interacting configurations

The average energy distance between two interacting configurations EavðK;K′Þ (28) is the main characteristic of CI in
atoms; also the configuration interaction strength (33) and the average shift of the energy level due to its interaction with
the levels of distant configuration (32) are expressed in terms of this quantity. It was introduced in [12], and the expressions
for various pairs of configurations were given in [13]. However, the minimal sums can be presented in more compact form,
preferable for the realization in computer code and some other improvements made. Furthermore, in the case of single-
electron excitation with a change of orbital quantum number three terms have been added which were omitted in [13].
In our work all formulae were rederived using the heuristic computer code [20]. In this Appendix the expressions for
EavðK ;K′Þ are presented for all main types of configurations, except Brillouin excitation.

When configurations K and K′ differ by quantum numbers of two electrons, the sum ∑
γγ′
〈KγjHjK′γ′〉2 contains only one

minimal sum. In order to present the formula for EavðK;K 0Þ in a compact form this quantity was expressed as follows:

EavðK ;K′Þ ¼ EavðKÞ−EavðK′Þ þ
OK′ðKÞ−OK ðK′Þ
Mðlilj; lulvÞ

; ðA:1Þ

where EavðKÞ is the average energy of configuration, Mðlilj; lulvÞ is the minimal sum (12) (in the notations of shells, li stands
instead of nili). We will present the formulae for OK′ðKÞ. The similar expression for OK ðK′Þ is obtained by the transposition of
shells in configuration K′ and using the corresponding numbers of electrons in the shells.

(i) Two-electron pair excitation:

K≡K0l
N1
1 lN2

2 ; K′≡K0l
N1−2
1 lN2þ2

2

(K0 means the open or closed shells having the same number of electrons in both configurations).

OK′ðKÞ ¼
ð4l1 þ 2−N1Þð4l1 þ 1−N1Þ

4l1ð4l1−1Þ
D1ðl1l1Þ þ

N2ðN2−1Þ
4l2ð4l2−1Þ

D1ðl2l2Þ þ
ð4l1 þ 2−N1ÞN2

4l14l2
D2ðl1l2Þ: ðA:2Þ

Here D1 and D2 are the minimal sums expressed in terms of two-electron matrix elements [17]:

D1ðlalbÞ≡D1ðKlalb;Klilj;K 0lulvÞ ¼
1
8
∑
LS
½L; S�VLS

lalb ;lalb
ðVLS

li lj ;lulv Þ
2; ðA:3Þ

D2ðlalbÞ≡D2ðKlalb;Klilj;K 0lulvÞ ¼− ∑
Q1Q2

½Q1;Q2�V
Q1Q2

lalb ;lalb
ðVQ1Q2

li lj ;lulv
Þ2: ðA:4Þ

The extended notations of minimal sums indicate the configurations, which radial orbitals are used for the calculation
of matrix elements. VLSand V

Q1Q2 are defined:

VLS
l1l2 ;l3 l4 ¼

1
2
N−1

l1l2N
−1
l3 l4〈l1l2LSjĥ

e
l3l4LS〉;


 ðA:5Þ
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V
Q1Q2

l1 l2 ;l3 l4 ¼∑
LS
½L; S�ð−1Þl1þl2þLþSþ1 l1 l2 L

l4 l3 Q1

( )
1=2 1=2 S

1=2 1=2 Q2

( )
VLS
l1l2 ;l3 l4 ; ðA:6Þ

where ĥ
e
is the traceless Coulomb interaction operator, N−1

li lj
is the normalization constant (13), [x, y,…]≡(2x+1)(2y+1)…

In separate cases, corresponding to the interaction between electrons in the same configuration, VLS
l1 l2 ;l3 l4 is expressed:

VLS
l1 l1 ;l1 l1 ¼ 1þ ð−1ÞLþS

h i
∑

k40
ð−1ÞL

l1 l1 L

l1 l1 k

( )
þ 1
ð2l1 þ 1Þð4l1 þ 1Þ

" #
〈l1jjCðKÞjjl1〉2Fkðl1; l1Þ; ðA:7Þ

VLS
l1 l2 ;l1 l2 ¼ ∑

k40
ð−1Þl1þl2þL l1 l2 L

l2 l1 k

( )
〈l1jjCkjjl1〉〈l2jjCkjjl2〉Fkðl1; l2Þ

þ∑
k

ð−1ÞS
l1 l2 L

l1 l2 k

( )
þ 1

2ð2l1 þ 1Þð2l2 þ 1Þ

" #
〈l1‖C kð Þ‖l2〉2Gkðl1; l2Þ: ðA:8Þ

The formula for VLS, corresponding to interconfiguration matrix element between the li and lj electrons of configuration
K and lu, lv electrons of configuration K 0gets:

VLS
lilj ;lulv ¼ ð−1Þljþlu∑

k
½ð−1ÞL

li lj L

lv lu k

( )
ℜkðlilj; lulvÞ þ ð−1ÞS

li lj L

lu lv k

( )
ℜkðlilj; lvluÞ�: ðA:9Þ

In Eqs. (A.7)–(A.9), Fk and Gk are the standard Slater integrals and ℜk is the general radial integral of the Coulomb
interaction along with the one-electron reduced matrix elements (14).

It should be noted that for avoiding uncertainties of the type 0 divided by 0 in Eq. (A.2) and the other expressions for Ok’

(K), the multipliers in the numerator should be cancelled with the identical multipliers in the denominator for the
particular Ni before specifying quantum numbers li. The application of such a rule enables one to avoid of the additional
multiplier which ensures the validity of formulae for configuration with s shell.

(ii) Two-electron paired-unpaired excitation:

K≡K0l
N1
1 lN2

2 lN3
3 ; K′≡K0l

N1−2
1 lN2þ1

2 lN3þ1
3

OK′ðKÞ ¼ 2
ð4l1 þ 2−N1Þð4l1 þ 1−N1Þ

4l1ð4l1−1Þ
D1ðl1l1Þ þ 4

N2N3

ð4l2 þ 1Þð4l3 þ 1ÞD1ðl2l3Þ þ
ð4l1 þ 2−N1ÞN2

4l1ð4l2 þ 1Þ D2ðl1l2Þ

þ ð4l1 þ 2−N1ÞN3

4l1ð4l3 þ 1Þ D2ðl1l3Þ: ðA:10Þ

(iii) Two-electron unpaired excitation:

K≡K0l
N1
1 lN2

2 lN3
3 lN4

4 ; K′≡K0l
N1−1
1 lN2−1

2 lN3þ1
3 lN4þ1

4

OK′ðKÞ ¼
ð4l1 þ 2−N1Þð4l2 þ 2−N2Þ

ð4l1 þ 1Þð4l2 þ 1Þ D1ðl1l2Þ þ
N3N4

ð4l3 þ 1Þð4l4 þ 1ÞD1ðl3l4Þ þ
ð4l1 þ 2−N1ÞN3

ð4l1 þ 1Þð4l3 þ 1ÞD2ðl1l3Þ

þ ð4l2 þ 2−N2ÞN3

ð4l2 þ 1Þð4l3 þ 1ÞD2ðl2l3Þ þ
ð4l1 þ 2−N1ÞN4

ð4l1 þ 1Þð4l4 þ 1ÞD2ðl1l4Þ þ
ð4l2 þ 2−N2ÞN4

ð4l2 þ 1Þð4l4 þ 1ÞD2ðl2l4Þ: ðA:11Þ

(iv) Single-electron excitation with a change of orbital quantum number

K≡K0l
N1
1 lN2

2 ; K 0≡K0l
N1−1
1 lN2þ1

2 ; ðl1≠l2Þ

This case is more complex, because the additional contributions corresponding to various interactions between shells
appear. The sum of the squares of interconfiguration matrix elements also contain several terms, so the eq. (A.1) should
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be replaced by the following one:

EavðK;K′Þ ¼ EavðKÞ−EavðK′Þ þ
O′
K′ðKÞ−O′

K ðK′Þ
∑
γγ0
〈KγjHjK′γ′〉2 : ðA:12Þ

Thus, every term of O′
K′ðKÞ contains simple multipliers which cannot be canceled with the similar multipliers from the sum

in the denominator. Additionally, more complex notation of the minimal sum, indicating also the quantum numbers of
electrons in the interconfiguration matrix element, should be used.

If the core K0 contains only closed shells, O′
K′ðKÞ has the expression:

O′
K′ðKÞ ¼ 2

N1ðN1−1Þð4l1 þ 2−N1Þð4l1 þ 1−N1Þð4l1−N1Þð4l2 þ 2−N2Þ
ð4l1 þ 2Þð4l1 þ 1Þ4l1ð4l1−1Þð4l1−2Þð4l2 þ 2Þ D1ðl1l1; l1l2; l1l1Þ

þ4
N1ð4l1 þ 2−N1ÞN2ð4l2 þ 2−N2Þð4l2 þ 1−N2Þð4l2−N2Þ

ð4l1 þ 2Þð4l1 þ 1Þð4l2 þ 2Þð4l2 þ 1Þ4l2ð4l2−1Þ
D1ðl1l2; l1l2; l2l2Þ

þ2
N1N2ðN2−1ÞðN2−2Þð4l2 þ 2−N2Þð4l2 þ 1−N2Þ
ð4l1 þ 2Þð4l2 þ 2Þð4l2 þ 1Þ4l2ð4l2−1Þð4l2−2Þ

D1ðl2l2; l1l2; l2l2Þ

þ4
N1ðN1−1ÞðN1−2Þð4l1 þ 2−N1ÞN2ð4l2 þ 2−N2Þ
ð4l1 þ 2Þð4l1 þ 1Þ4l1ð4l1−1Þð4l2 þ 2Þð4l2 þ 1Þ D1ðl1l2; l1l1; l1l2Þ

þN1ðN1−1Þð4l1 þ 2−N1Þð4l1 þ 1−N1ÞN2ð4l2 þ 2−N2Þ
ð4l1 þ 2Þð4l1 þ 1Þ4l1ð4l1−1Þð4l2 þ 2Þð4l2 þ 1Þ D2ðl1l2; l1l1; l1l2Þ

þN1ðN1−1ÞðN1−2Þð4l1 þ 2−N1Þð4l1 þ 1−N1Þð4l2 þ 2−N2Þ
ð4l1 þ 2Þð4l1 þ 1Þ4l1ð4l1−1Þð4l1−2Þð4l2 þ 2Þ D2ðl1l1; l1l1; l1l2Þ

þN1ð4l1 þ 2−N1ÞN2ðN2−1Þð4l2 þ 2−N2Þð4l2 þ 1−N2Þ
ð4l1 þ 2Þð4l1 þ 1Þð4l2 þ 2Þð4l2 þ 1Þ4l2ð4l2−1Þ

D2ðl1l2; l1l2; l2l2Þ

þN1N2ðN2−1Þð4l2 þ 2−N2Þð4l2 þ 1−N2Þð4l2−N2Þ
ð4l1 þ 2Þð4l2 þ 2Þð4l2 þ 1Þ4l2ð4l2−1Þð4l2−2Þ

D2ðl2l2; l1l2; l2l2Þ

þ2
N1ðN1−1Þð4l1 þ 2−N1ÞN2ð4l2 þ 2−N2Þð4l2 þ 1−N2Þ

ð4l1 þ 2Þð4l1 þ 1Þ4l1ð4l2 þ 2Þð4l2 þ 1Þ4l2
D2ðl1l2; l1l1; l1l2; l2l2; l2l1Þ: ðA:13Þ

In the last term the more general notation of minimal sum D2 is used:

D2ðlalb; lilj; lulv; lr ls; lplqÞ≡D2ðKlalb;Klilj;K 0lulv;K
0lrls;KlplqÞ ¼ − ∑

Q1Q2

½Q1;Q2� V
Q1Q2

la lb ;lalb
V
Q1Q2

li lj ;lulv
V
Q1Q2

lr ls ;lplq : ðA:14Þ

When the core K0 contains open shells, the following additional terms, corresponding to the interaction with these shells
appear:

ΔO′
K′ðKÞ ¼ 8

N1ð4l1 þ 2−N1Þð4l2 þ 2−N2Þ
ð4l1 þ 2Þð4l1 þ 1Þð4l2 þ 2Þ ∑

p

Npð4lp þ 2−NpÞð4lp þ 1−NpÞ
ð4lp þ 2Þð4lp þ 1Þ4lp

D1ðl1lp; l2lp; l1lpÞ

þ8
N1N2ð4l2 þ 2−N2Þ

ð4l1 þ 2Þð4l2 þ 2Þð4l2 þ 1Þ∑p
NpðNp−1Þð4lp þ 2−NpÞ
ð4lp þ 2Þð4lp þ 1Þ4lp

D1ðl2lp; l1lp; l2lpÞ

þ N1N2ð4l2 þ 2−N2Þ
ð4l1 þ 2Þð4l2 þ 2Þð4l2 þ 1Þ∑p

Npð4lp þ 2−NpÞð4lp þ 1−NpÞ
ð4lp þ 2Þð4lp þ 1Þ4lp

D2ðl2lp; l1lp; l2lpÞ

þ N1ð4l2 þ 2−N2Þ
ð4l1 þ 2Þð4l2 þ 2Þ∑p

NpðNp−1Þð4lp þ 2−NpÞð4lp þ 1−NpÞ
ð4lp þ 2Þð4lp þ 1Þ4lpð4lp−1Þ

D2ðlplp; l1lp; lpl2Þ

þ N1ð4l1 þ 2−N1ÞN2ð4l2 þ 2−N2Þ
ð4l1 þ 2Þð4l1 þ 1Þð4l2 þ 2Þð4l2 þ 1Þ∑p

Npð4lp þ 2−NpÞ
ð4lp þ 2Þð4lp þ 1ÞD2ðl1l2; l1lp; lpl2Þ

þN1ð4l1 þ 2−N1Þð4l2 þ 2−N2Þ
ð4l1 þ 2Þð4l1 þ 1Þð4l2 þ 2Þ ∑

p

NpðNp−1Þð4lp þ 2−NpÞ
ð4lp þ 2Þð4lp þ 1Þ4lp

D2ðl1lp; l1lp; l2lpÞ

þ2
N1ðN1−1Þð4l1 þ 2−N1Þð4l2 þ 2−N2Þ

ð4l1 þ 2Þð4l1 þ 1Þ4l1ð4l2 þ 2Þ ∑
p

Npð4lp þ 2−NpÞ
ð4lp þ 2Þð4lp þ 1ÞD2ðl1lp; l1l1; l1l2; lpl2; lpl1Þ

þ2
N1N2ð4l2 þ 2−N2Þð4l2 þ 1−N2Þ
ð4l1 þ 2Þð4l2 þ 2Þð4l2 þ 1Þ4l2

∑
p

Npð4lp þ 2−NpÞ
ð4lp þ 2Þð4lp þ 1ÞD2ðl2lp; l1l2; l2l2; l2lp; lpl2; lpl1Þ: ðA:15Þ

The summation over p includes open shells of core. In the last two terms the Eq. (A.14) for D2 is used.
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